Construction of Nijenhuis operators and dendriform trialgebras

نویسنده

  • Philippe Leroux
چکیده

We construct Nijenhuis operators from particular bialgebras called dendriform-Nijenhuis bialgebras. It turns out that such Nijenhuis operators commute with TD-operators, a kind of Baxter-Rota operators, and are therefore closely related to dendriform trialgebras. This allows the construction of associative algebras, called dendriform-Nijenhuis algebras, made out of nine operations and presenting an exotic combinatorial property. We also show that the augmented free dendriform-Nijenhuis algebra and its commutative version have a structure of connected Hopf algebras. Examples are given.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Construction of Nijenhuis Operators and Dendriform Trialgebras 1

We construct Nijenhuis operators from particular bialgebras called dendriformNijenhuis bialgebras. It turns out that such Nijenhuis operators commute with TD-operators, kind of Baxter-Rota operators, and therefore closely related dendriform trialgebras. This allows the construction of associative algebras, called dendriform-Nijenhuis algebras made out with nine operations and presenting an exot...

متن کامل

Ennea-algebras 1

A generalisation of a recent work of M. Aguiar and J.-L. Loday on quadri-algebras called tennea-algebras constructed over dendriform trialgebras is proposed. Such algebras allow the construction of nested dendriform trialgebras and are related to pre-Lie algebras, t-infinitesimal bialgebras and tBaxter operators. We also show that the augmented free t-ennea-algebra has a structure of connected ...

متن کامل

M ar 2 00 5 ROTA - BAXTER ALGEBRAS , DENDRIFORM ALGEBRAS AND POINCARÉ - BIRKHOFF - WITT THEOREM

Rota-Baxter algebras appeared in both the physics and mathematics literature. It is of great interest to have a simple construction of the free object of this algebraic structure. For example, free commutative Rota-Baxter algebras relate to double shuffle relations for multiple zeta values. The interest in the non-commutative setting arised in connection with the work of Connes and Kreimer on t...

متن کامل

2 00 5 Rota - Baxter Algebras , Dendriform Algebras and Poincaré - Birkhoff - Witt Theorem

Rota-Baxter algebras appeared in both the physics and mathematics literature. It is of great interest to have a simple construction of the free object of this algebraic structure. For example, free commutative Rota-Baxter algebras relate to double shuffle relations for multiple zeta values. The interest in the non-commutative setting arose in connection with the work of Connes and Kreimer on th...

متن کامل

On the Type and Type Product of Dendriform Algebras

We describe a general framework to define dendriform algebras and a general construction to obtain new dendriform algebra structures from known structures and from linear operators. The construction includes recent constructions of the quadri-algebra, the ennea-algebras, the dendriformNijenhuis algebras and the octo-algebras.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Int. J. Math. Mathematical Sciences

دوره 2004  شماره 

صفحات  -

تاریخ انتشار 2004